Study Guide

Momentum and Its Conservation

Vocabulary Review

Write the term that correctly completes the statement. Use each term once.

angular impulse-angular momentum theorem impul

momentum

angular momentum

closed system

impulse-momentum theorem

isolated system

law of conservation of angular momentum

law of conservation of momentum

in	apulse	Circumia and its
g		The product of a rotating Object's moment of inertia and its angular velocity is the of the object.

The ____ states that the momentum of any closed, isolated system does not change.

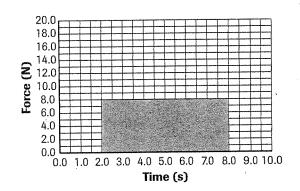
The ____ states that the angular impulse on an object equals the difference in the object's final and initial angular momenta.

The _____ states that an Object's initial angular momentum equals its final angular momentum when no external torque acts on the object.

5. _____ In a(n) ____, mass in neither gained nor lost.

6. _____ The product of the average force on an object and the time interval over which it acts is _____.

7. ______ In a(n) _____, no net external force is exerted on the system.


8. _____ When mass is multiplied by velocity, the answer is a measure of

The ____ states that the impulse on an object is equal to the change in the object's mo mentum.

9 Study Guide

Section 9.1 Impulse and Momentum

In your textbook, read about relating impulse and momentum on pages 230–231. The diagram shows the force-time graph for a force acting on a 12.0-kg cart initially at rest on a frictionless surface. Use the diagram to answer questions 1–8. Show your calculations where necessary.

- 1. What is the magnitude of the force acting on the cart?
- 2. How long does the force act on the cart? _____
- 3. The shaded area of the graph represents _____
- **4.** The algebraic expression that represents the shaded area of the graph is
- **5.** What is the amount of impulse acting on the cart?
- **6.** The algebraic expression that represents the momentum of the cart is
- **7.** What is the change in momentum of the cart?
- **8.** The final velocity of the cart is ______

118

In your textbook, read about using the impulse-momentum theorem on page 231. Read each statement below. For each situation, calculate v_i, v_f, p_i, p_f the impulse vector $F\Delta t$, and the amount of force needed for the change to occur. All situations refer to a truck with a mass of 2840 kg.

- **9.** The truck has a velocity of 8.30 m/s and comes to a stop in 15.0 s.
- **10.** The truck, initially at rest, reaches a velocity of 8.30 m/s in 20.0 s.
- 11. The truck is at rest. In 5.00 s, the truck backs up to a speed of 1.38 m/s.
- 12. The truck is moving backward with a velocity of 1.38 rm/s and comes to a stop in 5.00 s.

In your textbook, read about the impulse-momentum theorem as it applies to air bags on page 231. Answer the following questions. Use complete sentences.

- **13.** List two ways in which impulse can be increased.
- 14. How does an air bag reduce injuries that would be caused by the steering wheel during an accident? Write your answer in terms of impulse.

T	torrth o alv	road shout angular momentum on pages 233–235
Read	l each stateme	read about angular momentum on pages 233-235. In the statement is true, write true. If the statement is false, rewrite the statement true.
	15.	The moment of inertia of a fixed, solid object cannot be changed.
		<i>Linear</i> momentum is the product of the moment of inertia and angular velocity for a rotating object.
	17.	A change in torque on an object results in a change in angular momentum.
	18.	As an ice skater spins and pulls her arms closer to her body, her angular momentum decreases because of the change in her moment of inertia.
	19.	An object's moment of inertia depends upon the distribution of mass about the axis of rotation.
***************************************	20.	As each planet orbits the Sun, its angular momentum is zero because the gravitational torque on each planet is zero.
Water-1975	21.	A planet moves slower when its distance from the Sun decreases.
In y		read about two-particle collisions on pages 236–237.
Rear		
Tw	o balls, A an	d B, are traveling at different speeds and have different masses. They collide bound in opposite directions as part of a closed, isolated system.
Tw	o balls, A an ad-on and re	g sentences. Use complete sentences to comment on items 1-3. d B, are traveling at different speeds and have different masses. They collide
Tw he	o balls, A an ad-on and re	d B, are traveling at different speeds and have different masses. They collide bound in opposite directions as part of a closed, isolated system.
Tw be	o balls, A an ad-on and re	d B, are traveling at different speeds and have different masses. They collide bound in opposite directions as part of a closed, isolated system.
Tw he	the force tha	d B, are traveling at different speeds and have different masses. They collide bound in opposite directions as part of a closed, isolated system.
he	the force tha	d B, are traveling at different speeds and have different masses. They collide bound in opposite directions as part of a closed, isolated system. at ball A exerts on ball B and the force that ball B exerts on ball A
Tw he	the force tha	d B, are traveling at different speeds and have different masses. They collide bound in opposite directions as part of a closed, isolated system. at ball A exerts on ball B and the force that ball B exerts on ball A

In your textbook, read about momentum in a closed, isolated system on pages 236-237. Write the term that correctly completes the statement. Use each term once.

change

external forces

isolated system

closed system

interaction

law of conservation of

conditions

internal forces

momentum

A(n) (4)	is a system that does not gain or lose mass. Within such a
	. Forces that are outside this system are
	system is $a(n)$ (7) when the net
external force on it is zero. The (8)	states that the momentum of the
system does not (9)	if the system has no net external forces acting on it.
You can use this law to relate (10)	before and after an interaction even if
you do not know any details of the (11	

In your textbook, read about recoil on pages 238-239.

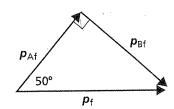
Write less than zero, zero, or greater than zero in the blanks for questions 12-15. For questions 16 and 17, circle the answer that best completes the statement.

Two in-line skaters are standing still on a surface that is smooth so that there are no external forces. The first skater gives the second skater a push in one particular direction. The momentum of the system before the push is (12) ______. The mornentum of the system after the push is (13) _____. The momentum of the first skater after the collision is (14) _____, and that of the second skater is (15) ___

- **16.** The momentum of the first skater after the push can be written as $p_{Af'}$ or it can be written as
 - a. p_{Ai}

c. $-p_{Bf}$

 \mathbf{b} . $+\mathbf{p}_{\mathrm{Rf}}$


- **d.** 0
- 17. If the velocity of the second skater after the push is represented by $v_{\rm Bf}$, the velocity of the first skater after the push is
 - $\mathbf{a.} \quad + \frac{m_{\mathrm{A}}}{m_{\mathrm{B}}} \, v_{\mathrm{Bf}}$

 $\mathbf{c.} \quad -\frac{m_{\mathrm{B}}}{m_{\mathrm{A}}} \, v_{\mathrm{Bf}}$

b. 0

d. $-\frac{m_{\rm A}}{m_{\rm B}} v_{\rm Bf}$

In your textbook, read about two-dimensional collisions on page 241. Read the paragraph below. Label the momentum diagram at right, indicating the final momentum of the system, $p_{\rm f}$; the momenta of both balls after the collision, $p_{\rm Af}$ and $p_{\rm Bf}$ the right angle; and the 50.0° angle.

A 4.0-kg ball, A, is moving at a speed of 3.0 m/s. It collides with a stationary ball, B, of the same mass. After the collision, ball A moves off in a direction of 50.0° to the left of its original direction. Ball B moves off in a direction of 90.0° to the right of ball A's final direction.

For each description given, write the letter of the matching term.

______ 18. the magnitude of the total momentum of the system before the collision

______ 19. the magnitude of the total momentum of the system after the collision

______ 20. the magnitude of ball A's final momentum

_____ 21. the magnitude of ball B's final momentum

22. Skater N, 58.9 kg, is moving north at a speed of 7.8 m/s when she collides with Skater E, 72.6 kg, moving east at 3.5 m/s. The two skaters are stuck together. In what direction and with what speed do they move after the collision? Draw and label a momentum-vector diagram. Show your calculations.